Quizlet ## 15 Multiple choice questions | 1. | the minimum ene | ergy required to remov | e an electron from | a surface by photoemission | |----|-----------------|------------------------|--------------------|----------------------------| |----|-----------------|------------------------|--------------------|----------------------------| - a. x-ray diffraction - b. striations - c. work function - d. q/m ratio - 2. semiconductor material has holes as the majority carriers and electrons as the minority carriers; the semiconductor is doped with group III atoms - a. striations - b. p-type - c. quantum - d. silicon - 3. electronic devices that use semiconductors rather than valves in their operation; solid-state devices have all but replace thermionic devices - a. solid-state devices - b. striations - c. thermionic devices - d. quantum physics - 4. use thermionic emission in their operation e.g. the filament of a cathode ray tube - a. solid-state devices - b. semiconductors - c. thermionic devices - d. Thomson, J.J - 5. along with relativity, is the foundation of modern physics; in 1900 Max Planck proposed that light came in bundles or quanta of energy - a. superconductors - b. q/m ratio - c. quantum - d. quantum physics | a. q/m ratio b. striations c. work function d. silicon 7. a British mathematician and physicist who was the first to identify the electron in 1897; he measured the charge to mass ratio (q/m) of cathode rays and showed that all cathode rays had the same value a. Thomson, J.J. b. striations c. silicon d. quantum 8. a group IV element used extensively in semiconductor devices a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors d. semiconductors 10. an elemental unit of energy, a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J. d. thermionic devices | 6. the patterns formed in a gas at low pressure as an electrical discharge is passed through it | | | | |--|---|--|--|--| | c. work function d. silicon 7. a British mathematician and physicist who was the first to identify the electron in 1897; he measured the charge to mass ratio (q/m) of cathode rays and showed that all cathode rays had the same value a. Thomson, J.J b. striations c. silicon d. quantum 8. a group IV element used extensively in semiconductor devices a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors d. semiconductors d. semiconductors d. a q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | a. q/m ratio | | | | d. silicon 7. a British mathematician and physicist who was the first to identify the electron in 1897; he measured the charge to mass ratio (q/m) of cathode rays and showed that all cathode rays had the same value a. Thomson, J.J b. striations c. silicon d. quantum 8. a group IV element used extensively in semiconductor devices a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | b. striations | | | | 7. a British mathematician and physicist who was the first to identify the electron in 1897; he measured the charge to mass ratio (q/m) of cathode rays and showed that all cathode rays had the same value a. Thomson, JJ b. striations c. silicon d. quantum 8. a group IV element used extensively in semiconductor devices a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | c. work function | | | | mass ratio (q/m) of cathode rays and showed that all cathode rays had the same value a. Thomson, J,J b. striations c. silicon d. quantum 8. a group IV element used extensively in semiconductor devices a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J,J | | d. silicon | | | | b. striations c. silicon d. quantum 8. a group IV element used extensively in semiconductor devices a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | 7. | | | | | c. silicon d. quantum 8. a group IV element used extensively in semiconductor devices a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | a. Thomson, J.J | | | | d. quantum 8. a group IV element used extensively in semiconductor devices a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | b. striations | | | | 8. a group IV element used extensively in semiconductor devices a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J. | | c. silicon | | | | a. silicon b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | d. quantum | | | | b. quantum c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | 8. | . a group IV element used extensively in semiconductor devices | | | | c. p-type d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | a. silicon | | | | d. striations 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | b. quantum | | | | 9. materials that have zero resistance when their temperatures are low enough; superconductors allow electrons to flow unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | c. p-type | | | | unimpeded a. silicon b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | d. striations | | | | b. striations c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | 9. | | | | | c. superconductors d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | a. silicon | | | | d. semiconductors 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | b. striations | | | | 10. an elemental unit of energy; a photon of energy; Planck proposed that emission and absorption of radiation for a black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | c. superconductors | | | | black body is quantised a. q/m ratio b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | d. semiconductors | | | | b. p-type c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J. | 10. | | | | | c. quantum d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | a. q/m ratio | | | | d. silicon 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | b. p-type | | | | 11. the minimum frequency below which light will not cause the emission of electrons from a material a. threshold frequency b. silicon c. Thomson, J.J | | c. quantum | | | | a. threshold frequencyb. siliconc. Thomson, J.J | | d. silicon | | | | b. silicon c. Thomson, J.J | 11. | the minimum frequency below which light will not cause the emission of electrons from a material | | | | c. Thomson, J.J | | a. threshold frequency | | | | | | b. silicon | | | | d. thermionic devices | | c. Thomson, J.J | | | | | | d. thermionic devices | | | | | | | | | - 12. materials with electrical conductivity between that of a conductor and an insulator; common conductors are silicon and germanium; doping a semiconductor alters its electrical properties - a. superconductors - b. semiconductors - c. striations - d. silicon - 13. the charge to mass ratio for charged particles; Thompson measured this ratio for cathode rays and in doing so discovered the electron - a. striations - b. quantum - c. work function - d. q/m ratio - 14. a constant that relates energy and frequency for a photon - a. Planck's constant - b. work function - c. semiconductors - d. quantum physics - 15. the use of x-rays to determine the internal structure of crystals; x-rays are scattered by the crystal and the pattern of reflections is determined by the position of the atoms of the crystal - a. striations - b. x-ray diffraction - c. q/m ratio - d. work function