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Total marks -120 
Attempt Questions 1 - 8 
All questions are of equal value 

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available. 

Question 1 (15 marks) Use a SEPARATE writing booklet. 

(a) J ' x 
Evaluate 0 clx 

Marks 

2 

(b) Using the substitution u =e' , find J-;==e'~,d.x 2 

(el (il 

(ii) 

G · h 5x' -5x+14 b .
\ven t at ~~) can e wntten as 

\x +4AX-2) 

5x'-5x+14 c 

x-2 

where a, b and c are real numbers, lind a, band c. 

J
5x' -5x+14 d.x 

Hence find (x' +4Xx _2) 

3 

2 

(d) Use the technique of illtegratioll to evaluate 3 

(e) Using the substitution x'" 2sec8 find 

J dx 

3 

2­
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Question 2 (15 marks) Use a SEP ARA TE writing booklet. 

(a) Let z 2 - i and w = 3 - 2i . Find, in the form x + iy, 

(i) 

(ii) iwz 

Maries 

1 

(b) Given z =1-J3 i , show that z' is a real multiple of .!. 
z 

3 

(e) Sketch the region represented by 

Izl<4 and !!:.<arg z~ 2Jr: 
3 3 

3 

(d) (i) (l+i)' '" 
Show that 6_J3i j + 3 

(li) For what values of k is 11(1 + i'f'f purely imaginary? 
~-J3i) 

2 

(e) The equation 

diagram. 

31 =4 corresponds to a branch of a hyperbola in the Argand 

Sketch the branch, showing the length of the semi -transverse axis. 

2 

Question 3 (15 marks) Use a SEPARATE writing booklet Maries 

(a) 
y 

The graph of y = f (x) is drawn above. 


There are x- and y- intercepts at -1 and y = 0,5 respectively. Also there are 


maximum and minimum turning points at respectively (1,4) and 


The graph has a horizontal asymptote at yO· 5 


On the Answer sheet provided sketch the following: 


(i) y fe-x} 1 

(i1) y= 2 

(iii) y' '" f(x) 2 

(iv) y= tan" f(x} 2 

(b) The equation 4 x' 36 is an ellipse. Find 

(i) the x- and y- intercepts; 2 

(ii) its eccentricity; 1 

(iii) the coordinates of its foci; 1 

(iv) the equations of its direel1ices and then sketch its graph. 2 

(c) statements are either true or false. Write TRUE or FALSE for eaeh 
a brief reason for your answer. You are NOT required to evaluate the 

(i) cos2xsin3x dx= 0 

I' dx r' dx 
1(U) J 

o 0 

- 3­
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Question 4 (J5 marks) Use a SEPARATE writing booklet 	 Marks 

(a) J+i and 3 - i are zeros of a real, monic polynomial, p(x), of degree 4. 

(i) 	 Express p(x) as a product of two real quadratic factors. 2 

(ii) 	 Explain briefly why the polynomial p(x) cannot take negative values for real 2 
values of.>:. 

(b) 	 (i) Find the point of intersection, in the first quadrant, of the two graphs below 2 
..' + lOy' = 10 

x' -8y' =8 

(ii) 	 Two graphs are said to be orthogonal if the product of their respective gradients 2 
at each point of intersection is -I. 
Show that the two graphs above are orthogonal at the point of intersection 
found in (i) above. 

(c) 	 (i) Given the hyperbola defined by x'" ct,Y -= ;: , show that the equation of the 2 
t 


tangent at the point where t'" P is x + ply = 2cp. 


(ii) Show that the tangents, at the points p and q, meet at the point 2 

T(2cpq,~1 
\..p+q p+q) 

(iii) 	 Find the equation of the locus of T if: 
(ex) 	 p +q k , where k is a coustant and ignoring any restrictions on the 1 

domain. 

(~) 	 pq =K , where K is a constant. 2 

·5 ­

Question 5 (15 marks) Use a SEPARATE writing booklet. 	 Marks 

(a) 	 The region bounded by the curve y '" eos-I x and the x-axis, in the first quadrant, is 4 


rotated abou t the line y =--I. 


Using the method of cylindrical shells, find its volume. 

(b) Jt
If x 	'4-u, 

I-tanu 
(i) 	 Show that tan x -= 1+ tantl 

J~ Jt
(ii) 	 Hence, or otherwise, show that In(1 +tan x) tU =-In 2 5 

o 8 

(e) 	 Six lines are drawn in a plane. No two lines are parallel, and no three of the lines m'e 
concurrent. 

(il 	 Show that there are 15 points of intersection. 1 

(ii) 	 If three of these points are chosen at random, show that the probability that 2 

· f h . I' . 12they aJI 1Ie on aile ate gIven mes IS -. 
91 

(iii) 	 Find the probability that if four of these points are chosen at random they do 2 
not all tie on one of the given lines. 

·6· 



MarksQuestion 6 (15 marks) Use a SEPARATE writing booklet. 

(a) 	 Figure 1 below shows a scale model of the volcano Mt Rekrap. 

The base oflhe model is elliptical in shape with the axes 60 cm by 40 em reducing 

uniformly to a circle of radius 12 cm at the top. 

The hollow core of the model has circular cross sections with a circle of radius 6 em 

at the base rising uniformly to a circle also of radius 12 crn at the top. 

The model is 24 em high. 

Figure 2 shows the top view of the cross sectional area of the volcano. 


Figure 1 

., ,., 
,. 

24cl11 

/ 
40 ern 

/ 
60cm 

Figure 2 

(i) 	 Show that at height h, the length of the semi-major axis is given by 2 

a=3o-ih 
(ii) 	 Show that the area of the cross sectional slice at height It is given by 4 

A = !!.-(9024 - 44811 + 311')
16 

You may assume that the area of an ellipse with semi-major axis a and semi­

minor axis b is given by Kab. 

(iii) 	 Find the volume of the scale model of Mt Rckrap. 2 

Question 6 continues on the next page 

Question 6 (continued) 	 Marks 

(b) 	 A skier accelerates down a slope and then skis up a short ski jump as shown in the 
diagram below. 

The skier leaves the jump at a speed of 12m!s and an angle of 60" to the horizontal, 

performs various gymnastic twists and lauds on a straight line section of the 45" 

down-slope Tseconds after leaving the jump. 

Let the oligin 0 of a Cartesian coordinate system be at the point where the skier 


leaves the jump. 

y 

/1-:.., 
~ l~'600 \ 

""'" A I.ro', • X 

\\)l 
~ .,
".

down-slope 

(i) 	 Assuming that x 0 and y '" -g , where g is the acceleration due to gravity, 3 

show that for 0.$ t :; T 

x =61 

y= 

2(ii) 

(iii) 	 At what speed does the skier land on the down-slope? 2 
Give your answer correct to one decimal place. 

, 

·7· - 8­
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Question 7 (15 marks) Use a SEPARATE writing booklet. 	 Ma.'ks 

(a) 	 11,e equation x' 8x' +7 0 has roots a, p and y, 2 

Find a polynomial equation that has roots a-I, fJ' and y-' . 

(b) 	 The Argand diagram below shows a regular n-sided polygon, with vertices 
A"A"A" ...,A" ... ,A._1 , which is inscribed in a unit circle with centre at z o. 
An lies on the positive real axis and corresponds to the number z = I . 
The other vertices are in anti-clockwise around the circle. 

Let d, be the length of the vector where r = 1,2, ...,n -1 and let P be defined by 


P= d,d, ... d._,. 


(21C) . (21!)Also, let m= cos -;;- +i sm -;;- . 

Irnz 

A, 

'\"" ) Re z 

(i) 	 Write down the complex numbers that correspond 10 the vertices 1 
A"A" ...,A" ...,A,,_,. Leave your answers in terms of aJ 

(ii) 	 By considering z' -1 0= 0 deduce that 2 

(z-m)(z - m' }..(Z-Ilr')= 1+ z+ z' +... + z'-' 

(iii) 	 Using the fact that d, = m', ' show that P n 2 

(iv) 	 Using the fact that zZ and cos28= 1- 2sin' e, show that 3 

(v) Hence, or otherwise, find an expression, in term~ of n, for 

. (21C) . r(n 1)11']sm -;;­ ...sm ..--11­

2 

(vi) Hence show that sin(~) 
4 

3 

9­

"'"Wi 

Question 8 (I5 marks) Use a SEPARATE writing booklet. 	 Marks 

(al 	 The arch)' = sin x, 0:0; x 1! is revolved around the line y c to generate the solid 


shown. 


(i) Show that the volume of the arch can be represented by x- 2 

(il) Find the value of c that minimises the volume. 3 

Question 8 continues over the pllge 

- 10­

c 



NSGHS 2007 Trial HSe Extension 2 Mathematics Exam Answer Sheet for Question 3(,,)
MarksQuestion 8 (continued) 

Number________________________ Teachcl':______ 
(b) 	 In tile diagram below, AB and AC m"e tangents from A to the circle with centre 0, 

meeting the circle at Band C. 
ADE is a secant of the circle. 0 is the midpoint of DE. (i) 
CO produced meets the circle at F. 

F 	

.x 
A -I 

(i) Show that A, 0, G and C ate concyclic points 2 


(il) Explain why LOGF LOAC 1 


2(iii) 	 Show that BF II AE (ii) 

(e) (il If I" I x"e-xdx form>O,showthat I" mI"_I-e-ee" form ~ 1 3 

(ii) 	 If Jm = ¥.!,'2.1m ' show that J m = mJm_1 for m ~ 1 1 

1(iii) 	 Deduce that J", = m! for In ;:: 1 

End of paper 

Turn over for parts (iii) and (iv) 

poX 

- 11 • - 12­



y 

-1 

(iv) y 

=:>­ /\ "X 

PLACE TillS SHEET INSIDE YOUR BOOKLET FOR QUESTION 3 

·13­

Qllestion 1 

(a) ' 
JIl 

(b) u 

J 

(e) (il 

(ii) 

dx dx 

u =4 +x' du 
[x=O,u =4;x=2,,, 8 

," 
du 1 J -' J(; "2 1I 'du 

" 

= 

eX::-:;,du=e"dx

f du 

= sin-I (u)+ 
sin-l " 

5x'-5x+14 ax+b c 


(x' +4Xx-2( 


,'.5x' 5x+ 14 '" 


Substitute x 2 ; 


c=3 

a+c=5 (coefficient of 

:. a = 2 

Substitute x '" 0 : 14 = 

+4) 

14=-2h+12 

:. b=-1 

:.a=2, b =-1, c =3 

J" 5--,,' -5x+ 14..d.t = f
\X' +4Xx-2) 

f --dx1 f
x' +4 + 

~+k 

3 



{~x2tan,j 2I:Gx2 +4+ 7+ 4i 

Questiou 2 

xtan -I 2xdx = 2xdx function] 
{a} 	 {i} if =4--1 -I 4i 3+4i 

Ji Jif.~ 2x' 1f.~ (4.<' -I I)-I~ --- dx 
4 0 1+ 4x2 16 2 0 1+ 4x' , 

Ji -1 J- i 1 .'. z' 	 Moivre'sTh"']
16 2 a 

1[: 1 1 [ +- tan-' 
16 4 4 


Jill)/; 


16 4 4 4 

:. Z2 = -8x].

Ji 1 z 
8 4 

(c) 

4 
(e) 	 x= 2secB=> dx 2secBtan B dB 

x' -4 ",4sec' 0-4 4(sec 2 0-1)=4tan'e 

dx= 1 2secBtanBdO 

B 


f 
o c 	 ,,2 · X · ·"(X)="21 sec "2 +e [ 

secB= 2 => B = 

1 
c 

- "0 



~i l '1-­ =:....,.~-~.:---

Question 3 

(i) 1+i= J2ciS(~)' I -fii 
(a) 

,..
----'f IS purely lmagmary If =0
(l -fii) (ii) 	 First, there is a lateral shift to the left of 

one unit 
k;r ;r The maximum is at (0,4) and the c, =O=>3=2nJr±'2,IlE¢ 

minimum is at (-2,0). 

c. k=6nt.'? =.'?(41l ±l}
2 2 With 

(*) 
(e) The foci ofthe hyperbola are S(3,0) and S' (-3, 0), with a transverse axis, 2a, of 4. 

(*)
So the length of the semi-transverse axis is given by a = 2 . 

The equation says that SP - S'P 4 (> 0), where P is any point on the hyperbola 
 (*) a horizontal asymptote at y =2 

(iii) First looking at y = 

We have f(x}:2 0 . 


The maximum is at and a horizontal 


asymptote at y 

At x =-1, there is a double root. 


Also when fex}> I, then f(x}>.[i7;) 


and when f(x)< 1, then f(x}< ,ff(x} 


To draw l f(x), reflect in the x-axis. 


So the branch must be the left one, as if P is taken on the right then SP - S'P < 0 

+--i-~' i -.~·I"-'··~') fl I I 'i I I I I l~' I ~-+-t~.i 

(l+i)' 

(l-Ei) 

2'-' x cisO 

2'ds2;r 

+ 

(1+i)'. 

Th"'J 
(i) ) =fe-A) is a reflection in the y-axis 



'"''"'~-'.'''.'',''--''"'"-'' .&&&&-	 ~.-'-"'.lI 
il 

Question 4 

6x+ 

2x + 

+ IJ 

(iv) 
The minimum is al (I, tan-' 4)= (1, 1,3), 

(a) (i) pel + 0 p(J 0 I:Conjugate 1'001 
The horizontal asymptote is at 

y=tan-'G) =0·46 

(Ii) 

. Similarly, (x-3)"+I>OforxEo 

4x' + 36 	 :. +1] > 0for x E9 4 	 0 

(i) 0),(0, 
(b) (i)(li) a' 9, b' 4 

e' 	 1 b' 1-':: 5 

9 9 


2 1 
:. y 9 => 	 3 .. 3 

:.x' 10 10 => x' 80 
9 9

(iii) Foci 0) 

(iv) X= 
:.X= 3 

The point of intersection is 
cos2xsin3x dx 0 TRUE sillce cos2xsin3x is an ODD function.(c) 	 (I) 3 ' 


Differentiate 2x + 20y.y' = 0 


(li) 	 O:O;x:o;1 x' >X4 11

y' = at 


4 > 	 lOy 5 3 ''3)
. 1 +x' >1+ X 	 dxf' 
.. dx < Differentiare 

=--=- at 
2 

o 
y' x

:.FALSE 	 By 

Now -~~ = -\ , so the two curves are ORTHOGONAL. 
5 2 

~'",. ~ 



dx 	 Question 5 
(c) (i) 

dt 

... '!I 	 = -'[2
I (0) 

yr'dx dt dl 


1 
 i26.4S 

.'. m=-,when I = P 
p 

1.1~ h 
C I 

... y--= cp) 
p 


... p'y-cp=-x+cp 


c 1 	
~15 

... :.y--= 2(X-CP) 

p P 


cp=-x+cp 


.. =2ep 


(ii) 	 Similarly x + ly = 2eq is the tangent when t = q. 2nrh 


2cp 


2eq -(2) 


(1)-(2): 	(P2_ q')y=2c(p_q) 

h x=cosy


2c(p q) 2c(P-q) 2e 
.y----- [p ;e q] 	 r= y+l 
.. - (p' _q2) - (p q)(p+q) p+q 


LiV,,2m'My

Substitute into (1): 

x+ v"1 1= 2cp::;:, (p+ q)x+ =2cp(p+q) 	 V f:21l'(Y+l)COSYdY 

2cpq
:. (P+q)x=2cpq::::;. x=-­

p+q 

:. T( 2cpq • 2c 

p+q 
 - 21l'J,~ sin y dy 


(ill) (a:) If p+q= k::;:,T( 2e
pq 

, 

p+q k 2~%+ 1)-21l'[-COS y]f 

2e 
:.y=!: =Il" 

2c 
[NB x= -xp(k- p)


k k (i) tan x 


. d' . I h . f 2c k' ck h Ie p (k - P) lS a qua raUc expresslOn t lat as a maXlmum 0 x=:- x = - w en p = . 
k 4 2 2 

4· 2c fSo the locus 0 f T 18 Y = or x 
k 2 	 l+tan~tanu 

4 
I-tanu 

(fJ) If pq= K::;:'T( 2CPq,~) 
I+tanup+q p+q 

y 2c 1 1 
:.;= 2cpq = pq =-;: (ti) u =~-x'du =-dx4 . 

x (:'Y=K,BUT pq;eO::;:, 0, excluded 	 x=OU=~'x=!!: u=!!: 
, 4' 4' 4 

Il' 
tan···- tanu 

';:~ 




In(l 

In(l+ 

1- lanu) 
+ l+tanu ~ 

(In2)du 

0) 7<~2 


J: tanx)dx 7<ln2 
8 

NB =1: 
(c) (0 With six Jines, an intersection is obtained by choosing any two lines ie r61 15 

,2) 

(ii) Any line has 5 points of intersection with the remaining lines, Choosing 3 of these 

points can be done in (~J 10 ways. 

Taking all six lines, there are 6 x 10= 60 ways to have three points on the same line. 

There are I (15) =455 ways of choosing any three points from all the intersections. 
3 


b b'l' . 60 12
S h 1 Ity ISo t e pro a 
455 91 

ALTERNATIVE 1: 
The probability of picking allY point is 1. Then this point lies on two lines, so the 
probability of picking another point that Jies on both lines as there are 4 

remaining points on both lines, Once this point is picked, the line is defined and so 

picking the last point is f,. Giving the probability as = *' 
For (iii), this will give I xf.rxf;x~ =fi and then take complement. 

ALTERNATIVE 2: 
The probability of picking a point on a given line is f;' To pick another point on the 

line is IT and finally f; to pick the last oint. As there are 6 lines, the probability is 

~x ~x f,x 6 =* . For (iii) use ?, x 6 and then take complement. 

(iii) First find the probability that the 4 points all lie on the line above. 

6x(5) 
. . 4 30 2 

USlllg the method above tIus would be -() =-­
15 1365 91 

4 

So the probability that they don't all lie on the same line is the probability of its 

COMPLEMENTARY event ie 1-l-. = 89 

91 91 


Question 6 

(a) (i) 

(ii) 

(iii) 

From the diagram 2a 60 ie Q 30 when h 0 and when II =24, Q radius 12 

By this relationship is linear. 

=30-2" 
4 

Similarly for b and the radius R of the internal circle. 

:. b 

... R 

So the area, A, of the cross sectional slice is given by A = Jlllb -:n.R' 

A~ 

=~[4(60-h)(40-h)-
16 
n: 

16 


= 7I'~024-448h+ 
16 

So if the cross sectional slice has a thickness, /:;h, then the volume of the slice is 

/:;V~~
16 

and so the volume, V, of Mt Rekrap is given by 

V 

= 7< [9024],-224h" +h'l: 
16 

=~(216576-
16 

=~xlO1376 
16 
6336n: 



(b) t =0, x =0, y =° Question 7 

1= O,X= 12c0860° =6,)' =12sin 60° =6..]3 

(i) 	 x=O 

:. x= k (constant) 

~=0,x=6] 
:.x=6 
:.x=6t+k, 

~=O,x=O] 
:. x=6t 

(a) Lety=,!,=;.x=.!. 
y=-g x y 

:. y = -gl + c (constant) :. ( ; J -8(;r+7= ° ~ =0, y =6..]3] 

:. y =-gt +6..]3 1 8
:.,-,+7=0 

y y:. y =-+ gt' +61..]3 +c, 
[t =0,)'=0] - :.1-8y+7y' =0 

:. y =-+ gt' +61..]3 (b) (i) A, f-? w,A, f-? w', ...,A,. f-? w'·, ... , A,,_I H W,,-I 

(ii) 	 At t = T, the skier lands at a point where y =-x iii) 	 z" -1 = °=;. z= 1, w, w' ,"', or' 
:. z" -1 can be factorised in two ways: :. _!.T2 +6T..]3 = -6T 


2 z" -1 = (z -1)(z - w)(z-w' )... (Z_W"-I) 


:. T( -1T+6..]3 +6) =0 	 = (z-1)(1 +z +z' +... +z"-') 
:. (z-w)(z-w')... (z-w''-')= (1 +z+z +... +z ''-')2 

:.-!.T+6..]3+6=0 (T*O) 
2 

(iii) 	 P=d,d, ...d,,_l =ll-aix!l-w'lx ... xll-w"-'1
:·1T =6..]3+6 

=1{I-w)(1 -w' ).. (1 -w,,-Il 	 [Iz~ =Izlxlwll 
:.T=g(..]3+1) 

g 	 =11+1+1' +... +1"-'1 [Let z = 1and llsing (iil] 

=1,,1 
(iii) 	 Att=T,x=6 

y=-gT+6..]3 =-l2(..]3 +1)+6..]3 =-6(..]3 +2) =11 

(iv) 	 !I-W'!' =11-Ci{2:J =1(I-Cof:')J-iSin(2:TV' =(x)' +(y)2 
v 

=6' +[- 6(..]3 +2)]' y =[(I-Co{2:'))-i8in(2:)]x[(I-eo{2:))+ iSin( 2:)] [zz =Izl'] 

:.v~23·2 +-eof:')J' +sin,(2:')x 

(27lt') ,(2m'), ,(2tD.)
:= 1 - 2 cos ----;; + cos ---;; + SIll --;-;The skier lands with a speed of 23·2 mis (con'ectto 1 decimal place) 

NB the skier does not land at an angle of 45° . 
=2- 2cos( z:.)= {I-co{2:')J 

=2(2sin(':;;:)) [1-eos2e =2sin' e1 

. ,(tD.)
= 4 sm 	 --;; 

:.!I-W'!' =4sin'(':;;:) 


:.11- w'! =2sin( .:;;:) [Izl>o] 


JI 

.~-	

j 



x - 2' [(1I-1)1l] (iv)]2sm · (1l)- 2'sm(21l'\!x... x sm --- lLjxll-.v'lx ... xll 
II 11 ) 11 

= d)d, ...d".) 

=p 

n (iii l] 

=11 

n 5 

5 5 
[From 

0 <!:. 21l <!:. 15' 5 2 

5 ) [ :. Sin(f}in(2;) > 0. 

Question 8 

(a) (i) 

r------J LIx 

Take a slice of thickness LIx and rotate it around .J' = c . 

This will form an approximate cylindrical disk of radius r and height 

LIx 

So the volume, LI V, of this "disk" is given by: 

LlV '" m-' Ax 

'" 1lijsinx - el' ~x 
'" 1l(sin x- cl'Ax 

So the volume, V, of the solid is given by 

V 1lf (sinx-eY dx 

jiM!;";;; g . ;.4;;MK'@tt;@·;;~d"" .'I""~ .. $WW.iHL=~!]!'.""",y L) J .dt.,14roi •Ir _,-', . . ,>-,4~f~rlV k?, '" o/J ?"-'R'"~ ";G';'«~ry;>;:c~.~" ~. ':, ~}'~'<"~""'''!:[''''"''4:::??~::~>~'"~-'''-'?*?~l::?,,!:~:~:r;~.," w~·.. ~" .. "~'~"~::2'7i,-~A' ",' PiM;; % 



--

(ii ) V= (sin x- c)' dx 	 (b) Construct BF 

sin' x dx - 2JTcf: sin x dx c'dx 

!!:. fH 2sin' x dx +2l1tf'-sin x 1 dx 

2 0 0 


+ lit' XJr=%f (l-cos 

- 41ZC + Jr'c' 	 A 
D , 

!!:. -4JTc+Jr'c' 
2 

= '::(Jr- Be + 
2 

(i) OG..LDE (0 midpoint of 

v = '::{Jr -Be + 2JTc') 


LACO 90· (AC 

:' LOGA = LACO 

2 

V' ='::(-8+4JTc) :, A, 0, G and Care concyclic points (converse of angles in the same segment) 2 

V' !!:.(4JrJ> 0 	 LOGF is the exterior angle to LOAC,
2 

:. LOAC 	 LOGF (exterior angle of a cyclic quadlilateral) Minimum V when V' 0:::::. -8 + 4JTc = 0 

8 2 


.·.c=­ (iii) LetLBFG4Jr Jr 
:,LBOC 2x at the centre and circumference) 

Given that V' > 0, with c = ~ then V is minimised, 
.',LAOC=x (AO axis of synunetry in AOOC)Jr 

:.LOAC='::-x (angle sum of right - angled Ll)
2 

:. LOOF 	 Jr 
2 

:.LFOE=x 

areeqllal):. DEli BF 



fCX"'(,-'d.x~' 
o 

d.x 

rn-I ( -" L"nIX -e px 

(e) (i) I m 
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