PENRITH HIGH SCHOOL

MATHEMATICS EXTENSION 2 2013

HSC Trial

Assessor: Mr Ferguson General Instructions:

- Reading time 5 minutes
- Working time **3 hours**
- Write using black or blue pen. Black pen is preferred
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11 16.
- Work on this question paper will not be marked.

Total marks - 100

SECTION 1 – Pages 2 - 7

10 marks

- Attempt Questions 1 10
- Allow about 15minutes for this section.

SECTION 2 – Pages 8 - 13

90 marks

- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section.

Section 1 Section 2

Question	Mark
1-3	
4-5	
6-7	
8	
9	
10	
Total	/10

Question	Mark	Question	Mark
11	/15	15 _{motion}	/5
12	/15	15 _{poly}	/7
13vol	/7	15 harder ext	/3
13graph	/8	16complex	/6
14conic	/12	16 harder ext	/9
14circle	/3		

Total	/100
%	

This paper MUST NOT be removed from the examinat	ion room
--	----------

Section I

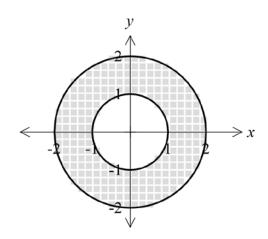
10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 Consider the Argand diagram below.

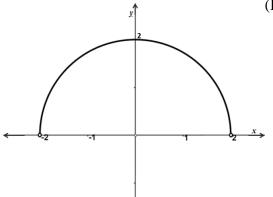


The inequality that represents the shaded area is:

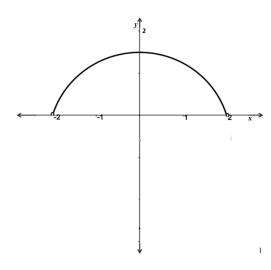
- $(A) \quad 0 \le |z| \le 2$
- (B) $1 \le |z| \le 2$
- $(C) \quad 0 \le |z-1| \le 2$
- (D) $1 \le |z-1| \le 2$
- 2 Let z = 1 + 2i and w = -2 + i. The value of $\frac{5}{iw}$ is:
 - (A) -1-2i
 - (B) -1 + 2i
 - (C) 1-2i
 - (D) 1 + 2i

3 The locus of z if $arg(z-2) - arg(z+2) = \frac{\pi}{4}$ is best shown as:

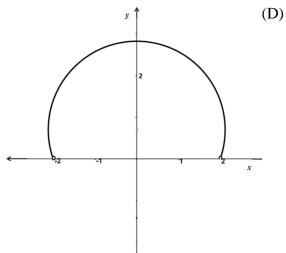
(A)

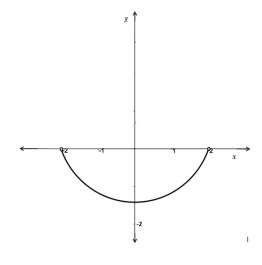


(B)

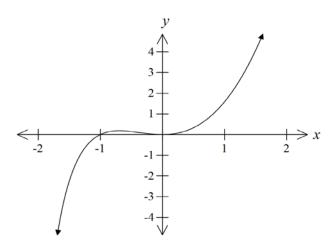


(C)

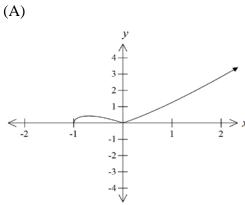




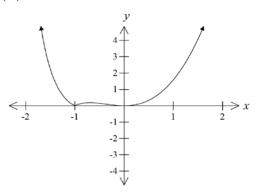
The diagram shows the graph of the function y = f(x).



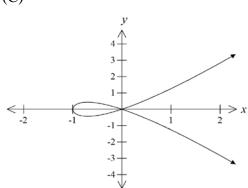
The diagram that shows the graph of the function $y = f(x)^2$ is:



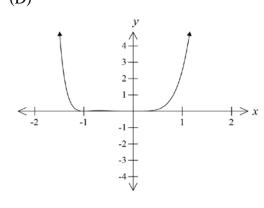
(B)



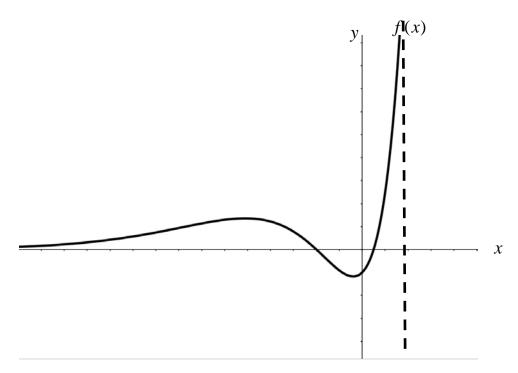
(C)



(D)



5 The function y = f(x) is drawn below.



Which of the following is an incorrect statement?

- (A) y = f(x) has two asymptotes only
- (B) y = f(x) is continuous everywhere in its domain
- (C) y = f(x) has exactly one point of inflexion
- (D) y = f(x) is differentiable everywhere in its domain.

6 The values of the real numbers p and q that makes 1-i a root of the equation $z^3 + pz + q = 0$ are:

5

- (A) p = -2 and q = -4
- (B) p = -2 and q = 4
- (C) p = 2 and q = -4
- (D) p = 2 and q = 4

Let P(x) be a polynomial of degree n > 0 such that $P(x) = (x - \alpha)^r Q(x)$, where $r \ge 2$ and α is a real number. Q(x) is a polynomial with real coefficients of degree q > 0. Which of the following is the incorrect statement?

- (A) $n \le r + q$
- (B) P(x) changes sign around the root $x = \alpha$
- (C) Let N_r be the number of real roots of P(x) and N_c the number of complex roots of P(x). Then $r \le N_r \le n$ and $0 \le N_c \le q$.
- (D) Roots of P(x) are conjugate one another.

8 The eccentricity of the ellipse with the equation $\frac{x^2}{4} + \frac{y^2}{3} = 1$ is:

(A) $\frac{1}{4}$

(B) $\frac{1}{2}$

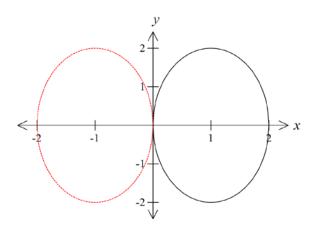
(C) $\frac{3}{4}$

(D) $\frac{9}{16}$

9 A particle of mass *m* falls from rest under gravity and the resistance to its motion is *mkv*, where *v* is its speed and *k* is a positive constant. Which of the following is the correct expression for the velocity?

- (A) $v = \frac{g}{k} \left(1 e^{-kt} \right)$
- (B) $v = \frac{g}{k} \left(1 + e^{-kt} \right)$
- (C) $v = \frac{g}{k} \left(1 e^{kt} \right)$
- (D) $v = \frac{g}{k} \left(1 + e^{kt} \right)$

10 The region enclosed by the ellipse $(x-1)^2 + \frac{y^2}{4} = 1$ is rotated about the y axis to form a solid.



What is the correct expression for volume of this solid using the method of slicing?

- (A) $V = \int_{-2}^{2} \pi \sqrt{1 y^2} dy$
- (B) $V = \int_{-2}^{2} 2\pi \sqrt{1 y^2} dy$
- (C) $V = \int_{-2}^{2} \pi \sqrt{4 y^2} dy$
- (D) $V = \int_{-2}^{2} 2\pi \sqrt{4 y^2} dy$

Section II

90 marks

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

- (a) The complex number z is given by $z = -1 + \sqrt{3}i$
 - (i) Show that $z^2 = 2\overline{z}$

2

(ii) Evaluate |z| and Arg(z)

2

(b) Calculate the product of the roots of the following equation in the form a+ib $(3+2i)z^2 - (1-2i)z + (6-i) = 0$

2

(c) Find the complex square roots of $7 - 6\sqrt{2}i$ giving your answers in the form x + iy, where x and y are real.

2

(d) (i) Express $z = \sqrt{3} + i$ in modulus/argument form.

3

(ii) Show that $z^7 + 64z = 0$

3

(e) The points A, B, C, D on the Argand diagram represent the complex numbers a, b, c, d respectively. If a+c=b+d and a-c=i(b-d) find what type of quadrilateral ABCD is.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int_{0}^{3} \frac{\sqrt{x}}{1+x} dx$$
 (Hint: let $u^2 = x$)

(b) By using a suitable trigonometric substitution show that $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + c$ 2

where c is some constant

(c) (i) Find real numbers
$$A, B$$
 and C such that
$$\int \frac{x+6}{(x+1)(x^2+9)} dx = \int \frac{A}{x+1} + \int \frac{Bx+C}{x^2+9}$$

(ii) Hence, find
$$\int \frac{x+6}{(x+1)(x^2+9)} dx$$

(d) Using the substitution
$$t = \tan \frac{x}{2}$$
, evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{5 + 3\cos x}$$

(e) For
$$n \ge 0$$
 let,

$$I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \ dx$$

Show that for
$$n \ge 2$$
, $I_n = n \left(\frac{\pi}{2}\right)^{n-1} - n(n-1)I_{n-2}$

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) The area bounded by the curve $y = 12x x^2$, the x axis, x = 2 and x = 10 is rotated about the y axis to form a solid. By using the method of cylindrical shells calculate the volume of the solid.
- (b) The base of a solid is the segment of the parabola $x^2 = 4y$ cut off by the line y = 2. Each cross section perpendicular to the y axis is a right angled isosceles triangle with the hypotenuse in the base of the solid. Find the volume of the solid.
- (c) Consider the function $f(x) = \frac{e^x 1}{e^x + 1}$
 - (i) Show that f(x) is an odd function 1
 - (ii) Show that the function is always increasing

 2
 - (iii) Find f'(0)
 - (iv) Discuss the behaviour of f(x) as $x \to \pm \infty$
 - (v) Sketch the graph of y = f(x) 2

Question 14 (15 marks) Use a SEPARATE writing booklet.

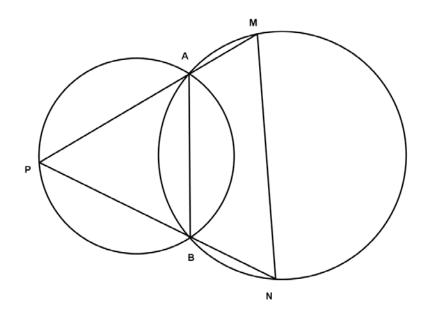
- (a) For the ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$
 - (i) Find the eccentricity 1
 - (ii) Find the coordinates of the foci S and S'
 - (iii) Find the coordinates of the directices.
 - (iv) Sketch the curve showing foci and directices.

P is an arbitrary point on this ellipse

- (v) Prove that the sum of the distances SP and S'P is independent of P
- (b) (i) Find the slope of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point

 $P(a\cos\theta,b\sin\theta)$

- (ii) Hence show that the equation of this tangent is $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$.
- (iii) If the point $P(a\cos\theta, b\sin\theta)$ is on the ellipse in quadrant one, find the minimum area of the triangle made by this tangent and the coordinate axes.
- (c) Two fixed circles intersect at AB. P is a variable point on one circle.



Copy or trace the diagram into your writing booklet.

- (i) Let $\angle APB = \theta$, explain why θ is a constant.
- (ii) Prove that MN is of a constant length.

1

2

Question 15 (15 marks) Use a SEPARATE writing booklet.

- (a) A body of unit mass falls under gravity through a resisted medium. The body falls from rest. The resistance to its motion is $\frac{1}{100}v^2$ Newtons where v metres per second is the speed of the body when it has fallen a distance x metres.
 - (i) Show that the equation of motion of the body is $\ddot{x} = g \frac{1}{100}v^2$, where g is the magnitude of the acceleration due to gravity. (Note: Draw a diagram!)
 - (ii) Show that the terminal speed, V_T , is given by $V_T = 10\sqrt{g}$
 - (iii) Show that $V^2 = V_T^2 \left(1 e^{\frac{-x}{50}} \right)$ 3
- (b) $x^3 6x^2 + 9x + k = 0$ has two equal roots.
 - (i) Show that k = -4 is a possible value for k
 - (ii) Solve $x^3 6x^2 + 9x 4 = 0$
- (c) α, β , and γ are the roots of $x^3 + px^2 + qx + r = 0$

Find

(i)
$$\alpha^2 + \beta^2 + \gamma^2$$

(ii)
$$\alpha^3 + \beta^3 + \gamma^3$$

(d)

(i) Prove that
$$x^2 + x + 1 \ge 0$$
 for all real x

(ii) Hence or otherwise, prove that $a^2 + ab + b^2 \ge 0$

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) Let
$$w = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$$

- (i) Show that w^k is a solution of $z^7 1 = 0$, where k is an integer. 2
- (ii) Prove that $w + w^2 + w^3 + w^4 + w^5 + w^6 = -1$
- (iii) Hence show that $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = -\frac{1}{2}$
- (b) The Bernoulli polynomials $B_n(x)$ are defined by $B_0(x) = 1$ and for n = 1, 2, 3, ...,

$$\frac{dB_n(x)}{dx} = nB_{n-1}(x), \text{ and}$$

$$\int_{0}^{1} B_n(x) dx = 0$$

Thus

$$B_1(x) = x - \frac{1}{2}$$

$$B_2(x) = x^2 - x + \frac{1}{6}$$

$$B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x$$

- (i) Show that $B_4(x) = x^2(x-1)^2 \frac{1}{30}$
- (ii) Show that, for $n \ge 2$, $B_n(1) B_n(0) = 0$
- (iii) Show by mathematical induction, that for $n \ge 1$ $B_n(x+1) B_n(x) = n^{-n} \bar{x}^1,$
- (iv) Hence show that for $n \ge 1$ and any positive integer k $n\sum_{n=0}^{k} m^{n-1} = B_n(k+1) B_n(0)$
- (v) Hence deduce that $\sum_{m=0}^{135} m^4 = 9134962308$

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_e x$, x > 0

$$\frac{5}{(-2+i)} = \frac{5}{-2i+i^2}$$

$$= \frac{5}{-1-2i} \times \frac{-1+2i}{-1+2i}$$

$$= \frac{-5+10i}{5}$$

$$= -1+2i$$
B

$$(3)$$
 C

(6) Roots (1-i), (1+i),
$$V$$

 $\Xi x = -\frac{1}{6} = 0$
 $\Xi x^{2} = \frac{1}{6} = 0$
 $\Xi x^{3} = -\frac{1}{6} = 0$
 $\Xi x^{3} = -\frac{1}{6} = 0$
 $\Xi x^{3} = -\frac{1}{6} = 0$
 $\Rightarrow 2+8=0$
 $\Rightarrow 2+8=0$
 $\Rightarrow 2+8=0$
 $\Rightarrow 3+3=0$
 $\Rightarrow 2+8=0$
 $\Rightarrow 2+8=0$
 $\Rightarrow 2+8=0$
 $\Rightarrow 2+8=0$

 $E \propto \beta \left(\frac{1-i}{(1+i)} + \frac{-2(1-i)}{+-2(1+i)} \right)$

2-2+2+-2-2; -2=P : P=-2 9=4

$$(7) \quad D$$

(8)
$$b^{2} = a^{2}(1-e^{2})$$

 $3 = 4(1-e^{2})$
 $3 = 1-e^{2}$
 $e^{2} = 1-\frac{3}{4}$
 $e^{2} = \frac{1}{2}$

$$\frac{\partial}{\partial x} = g - kV$$

$$\frac{\partial}{\partial x} = g - kV$$

$$\frac{\partial}{\partial x} = -\frac{k}{k} \frac{-k}{g - kV}$$

$$\frac{\partial}{\partial y} = -\frac{k}{k} \frac{-k}{g - kV}$$

$$2^{-kt} = \frac{g^{-kv}}{g^{-kt}}$$

$$ge^{-kt} = \frac{g^{-kv}}{g^{-kt}}$$

$$kv = \frac{g^{-g}}{g^{-kt}}$$

$$v = \frac{g^{-kv}}{k}$$

$$V = \frac{g^{-kv}}{k}$$

$$A$$

$$\begin{aligned}
&TI \int \chi_{2}^{2} - \chi_{1}^{2} dy \\
&V = TI \int_{-2}^{2} (\chi_{2}^{2} - \chi_{1}^{2}) dy \\
&(\chi - 1)^{2} + \chi_{+}^{2} = 1 \\
&\chi^{2} - 2\chi + 1 + \chi_{+}^{2} = 0
\end{aligned}$$

$$\begin{aligned}
&\chi(\chi - 1)^{2} + \chi_{+}^{2} = 1 \\
&\chi^{2} - 2\chi + \chi_{+}^{2} = 0
\end{aligned}$$

$$\begin{aligned}
&\chi(\chi - 1)^{2} + \chi_{+}^{2} = 1 \\
&\chi^{2} - 2\chi + \chi_{+}^{2} = 0
\end{aligned}$$

$$\begin{aligned}
&\chi(\chi - 1)^{2} + \chi_{+}^{2} = 1 \\
&\chi(\chi - 2\chi + \chi_{+}^{2}) = 0
\end{aligned}$$

$$\begin{aligned}
&\chi(\chi - 2\chi + \chi_{+}^{2}) = \chi_{+}^{2} - 2\chi + \chi_{+}^{2} = 1 \\
&\chi(\chi - 2\chi + \chi_{+}^{2}) = \chi_{+}^{2} - \chi_{+}^{2} = \chi_{+}^{2} + \chi_{+}^{2} + \chi_{+}^{2} + \chi_{+}^{2} = \chi_{+}^{2} + \chi_{+}^{$$

D

SECTION II

(ii)
$$|z| = -i + \sqrt{3}i$$

 $z^2 = (-1 + \sqrt{3}i)^2$
 $= 1 - 2\sqrt{3}i - 3$
 $= -2 - 2\sqrt{3}i$
 $z^2 = -1 - \sqrt{3}i$
 $z^2 = -2 - 2\sqrt{3}i$
 $z^2 = -2 - 2\sqrt{3}i$

(ii)
$$|z| = \sqrt{-1)^2 + (\sqrt{3})^2}$$

= $\sqrt{1+3}$
= 2

 $Arg = \frac{120}{3}$ b) $\alpha \beta = \frac{c}{a}$ $= \frac{6-i}{3+2i} \times \frac{3+2i}{3-2i}$

$$= \frac{16-15i}{13}$$

$$= \frac{16}{13} - \frac{15}{13}i$$

(-)
$$Z^{2} = 7 - 6\sqrt{2}i$$

 $x^{2} - y^{2} + 2ixy = 7 - 6\sqrt{2}i$
 $x^{2} - y^{2} = 7$
 $2xy = -6\sqrt{2}$
 $(x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + 4x^{2}y^{2}$
 $= 49 + 72$

$$(x^{2}+y^{2})^{2} = 121$$

$$x^{2}+y^{2} = 11 - 0$$

$$x^{2}-y^{2} = 7 - 2$$

$$0-0$$
 $2y^2=4$
 $x^2=9$... $x=\pm 3$
 $y^2=2$... $y=\pm 2$

check in # $2xy = -6\sqrt{2}$ $\pm (3-2i)$

d) i)
$$Z = \sqrt{3} + i$$

$$Z = 2 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{6}\right)$$

(ii)
$$Z^7 = 2^7 \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6}\right)$$

 $= 128 \left(\cos \frac{-5\pi}{6} + i \sin \frac{-5\pi}{6}\right)$
 $= 128 \left(-\cos \frac{\pi}{6} - i \sin \frac{\pi}{6}\right)$
 $= -128 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$
 $= -64.2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$
 $= -64.2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$

e) a+c=b+d

a+c = b+d

i.midpoint Ac=midpoint BD

i.diagonals AC, BD bisect

eachother

a-c=i(b-d)

i.diagonal Ac and BD

are equal and perpendicular

i.ABCD is a square

(12) a)
$$\int \frac{\sqrt{3}}{1+x} dx$$

O Let $u^2 = x$
 $2u \frac{dx}{dx} = 1$
 $dx = 1$

$$C(i) \int_{(24)(x^{2}+9)} \frac{x+6}{2x} dx$$

$$(x^{2}+9)A + (x+1)(Bx+c) = x+6$$
Let $x=1$

$$10A = 5$$

$$A = \frac{1}{2}$$
Let $x=0$

$$9(\frac{1}{2}) + 1(c) = 6$$

$$9 + 2c = 12$$

$$2c = 3$$

$$c = \frac{3}{2}$$
Let $x = 1$

$$10 + 2(B + \frac{3}{2}) = 2$$

$$B + \frac{3}{2} = 1$$

$$B = -\frac{1}{2}$$

$$A = \frac{1}{2}$$

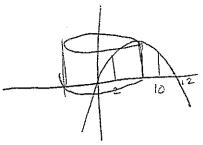
$$A =$$

(d) Let
$$t = tan^{\frac{1}{2}}$$

$$dt = \frac{1}{2}sec^{2} \frac{\pi}{2}d\pi$$

$$= \frac{1+t^{2}}{2}d\pi$$

$$= \frac{1+t^$$



$$V = \int 2\pi xy dx$$

$$= 2\pi \int_{\pi}^{10} 12x^{2} + x^{3} dx$$

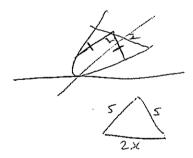
$$= 2\pi \int_{\pi}^{10} 12x^{2} + x^{3} dx$$

$$= 2\pi \left[4x^{3} + x^{4} \right]_{\pi}^{10}$$

$$= 2\pi \left[400 + \frac{10000}{4} - \frac{32}{4} \right]$$

$$= 2\pi \left[1500 - 28 \right]$$

$$= 294477 \text{ units}^{2}$$



 $2s^2 = 4x^2$ $2s^2 = 2x^2$

S = >6 JZ

area of trange is \$bxh \$252 = 762

V= 5 4y dy

[24] = 8 abic units

(c) (i)
$$f(x) = \frac{e^{x}-1}{e^{x}+1}$$

$$f(x) = \frac{e^{x}-1}{e^{x}+1} \times \frac{e^{x}}{e^{x}}$$

$$= \frac{1-e^{x}}{1+e^{x}}$$

$$= -e^{x}-1$$

$$= \frac{2e^{x}}{(e^{x}+1)^{2}}$$
but $e^{x} > 0$

$$(e^{x}+1)^{2} > 1$$

$$\therefore f(x) > 0$$

$$\therefore f(x) \text{ is a livery increasing}$$
(iii) $f(0) = \frac{2e^{0}}{(e^{0}+1)^{2}}$

$$= \frac{2}{2^{2}} = \frac{1}{2}$$
(iv) $f(x) = \frac{e^{x}-1}{e^{x}+1}$

$$= \frac{1-e^{-x}}{1+e^{-x}} \rightarrow \frac{1}{4} \text{ as } x > -1$$

$$f(x) = \frac{e^{x}-1}{e^{x}+1} \rightarrow \frac{1}{4} \text{ as } x > -1$$

$$(14)$$
 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ $a = 2 b = \sqrt{3}$

a)(i)
$$b^2 = a^2(1-e^2)$$

 $3 = 4(1-e^2)$

$$\frac{3}{4} = 1 - e^2$$

(ii)
$$S = (ae, o)$$

=(1,0)

(b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$b^2 x^2 + a^2 y^2 = a^2 b^2$$

$$\frac{dy}{ds^2} = -\frac{b^2x}{a^2y}$$

$$\frac{dy}{dn} = \frac{-ab^2\cos \alpha}{a^2b\sin \alpha}$$

$$=$$
 $-b\cos Q$

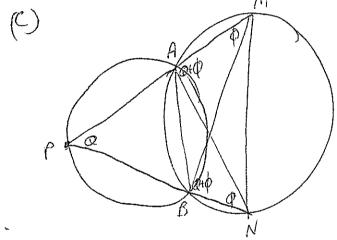
So
$$A(0, \frac{b}{\sin 2})$$
 $B(\frac{a}{\cos 0}, 0)$

Area of DAOB

$$= \frac{1}{2}(0B, 0A)$$

$$= \frac{ab}{2\sin 2} \cos a$$

min when $\frac{a}{2}\sin 20 \cos a$
 $\sin 20 = 1$ ie when $0 = \frac{a}{2}$



(i) since AB is a fixed chord

... Q is a constant since
angle subtended from same
chord AB are equal.

(ii) Lb is fixed (angle subtended by same chord AB,

LMAN = LMBN = Q+Q (both are
exterior angles to APAN and
APBM respectively
= constant.

... MN is a constant since fixed circumference angles subtends fixed chords in the same circle

(a)

$$F = mg - \frac{1}{100}v^2$$

$$Si = q - \frac{1}{100m}v^2$$

m=)

(it) when terminal

$$= -\frac{100}{5} \ln (V_1^2 - V_1^2)$$

$$-50 \ln (V_1^2 - V_1^2) = \chi + C$$

$$V_1^2 - V_1^2 - Ae^{-\frac{2}{5}}$$

$$V_2^2 = V_1^2 - Ae^{-\frac{2}{5}}$$

b)
$$P(x) = 3x^2 - 12x + 9$$

 $3(x^2 - 4x + 3) = 0$

3212

$$1-619+k=0$$
 $k=-7$

(i)
$$\sqrt{37} + \sqrt{37} + \sqrt{37} = (0.4 + 6 + 6)^2 - 2(0.4 + 6 + 6)^2 = -6^2 - 26$$

= $-6^2 - 26$
(ii) $\sqrt{3} = -6^2 - 6 - 6$
 $\sqrt{3} = -60^2 - 6$
 $\sqrt{3} = -60^$

$$\Delta = b^{2} - tac$$

$$1 - t = 0 \cdot canny m.$$

$$(1) \quad a^{2} + ab + b^{2} = b^{2} \left(\frac{2}{b^{2}} + \frac{b}{b^{2}}\right)$$

$$= b^{2} \left(\frac{2}{b^{2}} + \frac{b}{b^{2}}\right)$$

20.

16) a(i) W=COS THISWT W = cos 27/ tisin 7 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}}$ = (cos 2km +15m2km) -1 =(1+0)-1=0 (ii) wtwst...wb = 9(1-1") $= \omega(1-\omega^6)$ 1-0 (ir) w+w=2005 75 WZ+WS=2cos wint 2005 等 2005年2005年2005年1 COS \$ + COS \$ + COS \$ = - \(\) (1) Bi(x) = 4 / B3/54) da $= \int_{0}^{\infty} 4x^{3} - 6x^{2} + 7x dx$ = 27-2x3+x2+C Now Sx - 2x 3 +x 7c a = 9 0=(\$x5-\frace\frac

· : c={-}-\$ = -70 : Byby=x4-2x3+12-1 $= \chi^{2}(\chi-1)^{2} - \frac{1}{30}$ (ii) $\beta_{n(i)} - \beta_{i}(o)$ = JB, (x) de =0 by defindin. 1e B_(1) - B_(0)=0 If n=1: I Bo(x) die John (19) Let (n) by the statement . that Br(x1) - Br(x) = n > 1 for some positive integer n. Nor B, (x+1) - B, (x) = x+1-\frac{1}{2}-(x-\frac{1}{2}) = 1 x +1 Have S(1) the Let k be some postfre intger for Which shot the 10 Bx(x+1)-B(x)=kx+1 Consider an [Ray (SHI) - BAI(2)] = (K+1) B(BHT) (K+1) B(D) = (x+1) [Bx (x+1) - Bx 64] = (kil) k, x k by assumption

, B BH (DU)-BH/(R) = H12K

(V)
$$B_{A}(1) - B_{A}(0) = n \cdot n^{n-1}$$
 $B_{A}(2) - B_{A}(2) = n \cdot n^{n-1}$
 $B_{A}(3) - B_{A}(2) = n \cdot n^{n-1}$
 $B_{A}(k) - B_{A}(k) = n \cdot n^{n-1}$
 $B_{A}(k+1) - B_{A}(k) = n \cdot n^{n-1}$
 $B_{A}(k+1) - B_{A}(k) = n \cdot n^{n-1}$
 $B_{A}(k+1) - B_{A}(k)$
Sum of $C_{A}(k+1) - C_{A}(k)$
 $C_{A}(k+1) - C_{A}(k)$