| kinematics | the study of motion
without examining the
causes; the description
of motion | |---------------------------------|---| | kinetic energy | energy of motion | | law of conservation of energy | energy can neither be
created nor destroyed
but only changed in
form | | law of conservation of momentum | in the absence of external forces, the sum of the momenta before the collision is equal to the sum of the momenta after the collision | | mass | a fundamental physical
quantity; a measure of
the amount of matter or
inertia | | metre | a fundamental unit of length; it is equal to the distance travelled by light in a vacuum in the fraction 1/299,792,458 of a second | |--------------------|--| | momentum | the product of mass
and velocity of a
moving body | | motion | change in position
relative to an
observer | | Newton | the SI unit of force; it is
that force which will
accelerate a mass of 1 kg
at 1m.s | | Newton's First Law | a body will remain at rest or
travel with constant velocity
unless acted upon by an
unbalanced force | | Newton's Second | |-----------------| | Law | the acceleration of an object is directly proportional to the resultant force acting on it and inversely proportional to its mass Newton's Third Law if one body exerts a force on a second body, the second body exerts the same force back on the first body; to every action there is an equal and opposite reaction potential energy energy due to position or configuration; stored energy resolution of vectors the breaking down of a vector into its components resultant that single vector which has the same effect as a number of other vectors; the vector sum of a number of vectors | resultant force | that single force which
would have the same effect
as two or more forces
applied to the same point | |-----------------|--| | scalar | a quantity that can be represented completely, purely by a number | | speed | time rate of change
of distance | | tension | forces in ropes,
strings, wires, cables,
etc. | | vector | a quantity that needs both a
size and a direction to
describe it fully and which
obeys special laws of addition | | velocity | the time rate of
change of
displacement | |----------|---| | weight | the force of gravity
on an object | | work | the product of force
and displacement
parallel to the force |