

TRIAL 2014 YEAR 12 TASK 4

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 180 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Ouestions 11-16
- Marks may be deducted for careless or badly arranged work

Total marks – 100 Exam consists of 11 pages.

This paper consists of TWO sections.

<u>Section 1</u> – Page 2-4 (10 marks) Questions 1-10

- Attempt Question 1-10
- Allow about 15 minutes for this section

Section II – Pages 5-10 (90 marks)

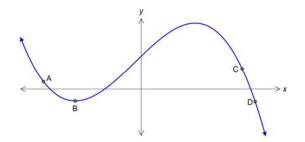
- Attempt questions 11-16
- Allow about 2 hours and 45 minutes for this section

Table of Standard Integrals is on page 11

Section I - 10 marks

Use the multiple choice answer sheet for question 1-10

- If $3\sqrt{5} + \sqrt{20} = \sqrt{a}$ then a is 1.
 - (A)5
- (B) 25


- (C) 125
- (D) 15

- What is the exact value of $\cos \frac{7\pi}{6}$ 2.

 - (A) $\frac{\sqrt{3}}{2}$ (B) $-\frac{\sqrt{3}}{2}$

- (C) $\frac{1}{2}$
- (D) $-\frac{1}{2}$
- **3.** State which point on the diagram relates to the following

$$y > 0$$
, $\frac{dy}{dx} < 0$, $\frac{d^2y}{dx^2} > 0$.

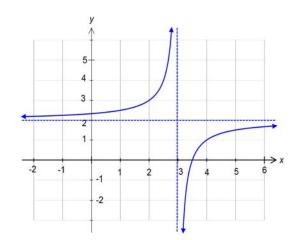
- (A) A
- (B) B

- (C) C
- (D) D

- If $\int_{1}^{4} f(x)dx = 2$ then $\int_{1}^{4} (2f(x) + 3) dx$ is equal to 4.
 - (A) 2
- (B) 13

- (C) 7
- (D) 10

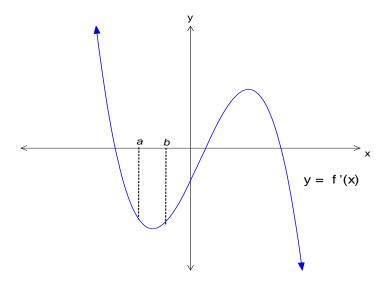
- 5.
 - (A) 1
- (B) 4


- $(C)^{\frac{1}{4}}$
- (D) 0

- The function $f(x) = -3 \sin(\frac{\pi x}{5})$ has a period of 6.
 - (A) 3
- (B) 10

- $(C)\frac{\pi}{5}$
- (D) $\frac{\pi}{10}$
- The sum of the series $\frac{4}{9} + \frac{2}{9} + \frac{1}{9} + \frac{1}{18} + \frac{1}{36} + \frac{1}{72} \dots \frac{1}{144}$ is 7.
 - (A) $\frac{127}{36}$ (B) $\frac{127}{81}$

- (C) $\frac{127}{144}$

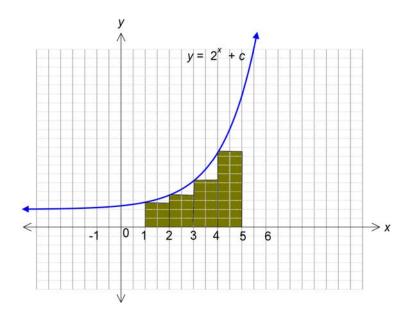

Part of the function $y = \frac{a}{x+b} + c$ is shown 8.

The value of a, b and c respectively are

- (A) 2, 3, 2
- (B) 2, -3, 2
- (C) -2, -3, 2 (D) -2, 3, 2

The function y = f'(x) shown below 9.

Between x = a and x = b, the function y = f(x) will have a


(A) negative gradient

(B) positive gradient

(C) local minimum value

(D) local maximum value

Consider the graph of $y = 2^x + c$, where c is a real number. The area of the shaded rectangles is used to find an approximation to the area of the region that is bounded by the graph, the x - axis and the line x = 1 and x = 5

If the total area of the shaded rectangles is 44, then the value of *c* is

(A) 14

(B) -4

(C) $\frac{14}{5}$

(D) $\frac{7}{2}$

End of Section 1

Section II – Extended Response Attempt questions 11-16. All necessary working should be shown in every question.

Qu	estion 11 (15 marks) (Answer on the appropriate page in your booklet)	
a)	Solve $\frac{1}{x} = x - 1$ leaving your answer in the exact form.	2
b)	Solve $ 3x - 4 \le 8$	2
c)	If $\tan \theta = \frac{7}{8}$ and $\cos \theta < 0$, find the exact value of $\sin \theta$.	2
d)	Solve for x : $9^{2x-3} = 27$	2
e)	Differentiate with respect to x	
	$y = \cos(x^2)$	2
	$(ii) y = \frac{(1 - e^{2x})}{x^3}$	2
f)	Find the equation of the normal to $y = 2x^3 - 3x^2$ at a point $x = -1$	3

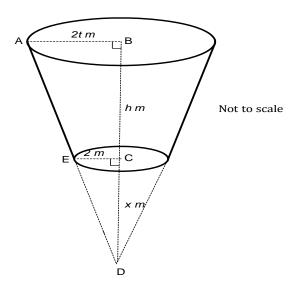
End of Question 11

Qu	estion 12 (15 marks) (Answer on the appropriate page in your booklet)	
a)	Not to scale $\frac{5\pi}{2}$ In the diagram AB is an arc of a circle with the centre O . The length of the arc AB is	2
	$\frac{5\pi}{2}$ cm. The area of the sector AOB is 4π cm ² . Find the radius of the sector.	
b)	The diagram shows the point $A(2,5)$ and $B(5,4)$ Not to scale Not to scale A B Not to scale A B Ciii Show that equation of line AB is $x + 3y - 17 = 0$ Ciii Find the coordinates of M the midpoint of AB. Ciii Show that the equation of the perpendicular bisector of AB is $3x - y - 6 = 0$ Civ The perpendicular bisector of AB cuts the x -axis at C. Find the coordinates of C. The perpendicular bisector of AB cuts the x -axis at C. Find the coordinates of C.	2 1 2
c)	Give the exact value of $\log_3\left(\frac{1}{\sqrt{3}}\right)$	1
d)	Find $\int \sin \frac{x}{2} dx$.	2
e)	If the limiting sum of the series $1 - 2p + 4p^2 \dots$ is $\frac{4}{7}$. Find the value of p .	2

	estion 13	(15 marks) (Answer on the appropriate page in your booklet)			
ı)	Consider the function given by $f(x) = 2x^3 - 3x^2 - 36x + 26$.				
	(i)	Find the coordinates of the stationary points of the curve $y = f(x)$ and determine their nature.	3		
	(ii)	Find the coordinates of any point of inflection.	2		
	(iii)	Hence sketch the graph of $f(x) = 2x^3 - 3x^2 - 36x + 26$ by showing the above information.	2		
	(iv)	For what values of x is the curve concave down and decreasing?	2		
	bearing o	any flies on a bearing of 330°T at a speed of 180km/h and Stella flies on a f 080°T at a speed of 240km/h. Copy the diagram below onto your answer page the information on the diagram.			
		N R			
	(i)	s	2		
	(i) (ii)	R	2 2		
()	(ii) There is o	How far apart are Danny and Stella after 2 hours? What is the bearing of Stella from Danny after 2 hours? (to the nearest degree) one red and three green jelly beans in a jar. One jellybean is selected at random, d then a second jellybean is selected at random and is also eaten. Find the			
c)	(ii) There is a eaten, and	How far apart are Danny and Stella after 2 hours? What is the bearing of Stella from Danny after 2 hours? (to the nearest degree) one red and three green jelly beans in a jar. One jellybean is selected at random, d then a second jellybean is selected at random and is also eaten. Find the			

End of Question 13

Qu	estion 14 (15 marks) (Answer on the appropriate page in your booklet)	
a)	The acceleration of a moving body is given by $a = \sqrt{2t+1} \ ms^{-2}$. If the body starts from rest, find its velocity after 4 seconds.	2
b)	Find the area of the region in the diagram bounded by curve $y = \log x$, x axis and line $x=6$.	2
c)	 The velocity of an object is given by the equation v = 6t - 5 - t² where t is in seconds and velocity v in m/s. It begins its motion at x = 5 metres. (i) Find an equation for the displacement of the object. (ii) At what two times is the object stationary? (iii) Find the distance travelled by the object in first 3 seconds. 	2 1 2
d)	 Consider a parabola 2y = x² - 4x (i) Find the coordinates of the focus. (ii) Find the equation of the directrix. 	2
e)	 Let A be the point (-2,0) and B(6,0). The point P(x,y) is such that AP ⊥ PB. (i) Find the gradient of PA. (ii) Hence find the equation for the locus of P. 	1 2


.)	(i) Show that $\sqrt{\frac{\csc^2 x \cdot \cot^2 x \cdot \cos^2 x}{\cos^2 x}} = \tan x $	2
	(ii) Find the value of x if $\sqrt{\frac{\csc^2 x - \cot^2 x - \cos^2 x}{\cos^2 x}} = 1$ for $0 < x < \pi$	1
)	The population of a species of bacteria P at time t (minutes) grows such that	
	$P = 2000e^{kt}$ where k is the positive constant.	
	(i) Show that the rate of increase of the population is proportional to the size of the population at that time.	1
	(ii) Given that the initial population doubles after 4 minutes, calculate the value of <i>k</i> , correct to 3 significant figures.	2
	(iii) Find the population after 6 minutes.(correct to nearest whole number)	2
:)	Not to scale	
	c	
	F E D	
	In the diagram $AB \parallel FD$. ADF is a right angled triangle, C is the midpoint of AD and E is the midpoint of FD .	
	(i) Explain why $\angle CED = \angle ABC$.	1
	(ii) Show that $\triangle CDE \equiv \triangle CAB$.	3

Question 16 (15 marks) (Answer on the appropriate page in your booklet)

a) Given that $2\log(x^2y) = 3 + \log x - \log y$. Express y in terms of x.

- 3
- b) Sonia and Jenny want to save a deposit of \$50 000 to buy a house. They devise a savings plan to allow them to achieve this goal. Beginning on 1st January 2014, they deposit \$1000 on the first day of each month into an account which pays 9% p.a compounded monthly.
 - (i) Find the amount they have in the account on 31st January 2014. (i.e. at the end of the first month)

- 1
- (ii) Show that the amount they have in the account at the end of n months is given by $A = \frac{1007.5(1.0075^n 1)}{0.0075}$
- 2
- (iii) Hence find the least number of months they need to save their deposit.
- 2
- c) A truncated cone is to be used as a part of a hopper for a grain harvester. It has a height of *h* metres. The radius *AB* is to be *t* times greater than the bottom radius *EC* which is 2 metres.

- (i) If x is the height of the removed section of the original cone, show that
- 2

- $x = \frac{h}{t-1}$
- (ii) Show that the volume of the truncated cone is given by

2

3

 $V = \frac{4\pi h}{3} (t^2 + t + 1)$

- (iii) If the upper radius plus the lower radius plus the height of the truncated cone must total 12 metres, calculate the maximum volume of the hopper.

END OF EXAM

$$\frac{011a}{x^{2}-x-1} = x-1$$

$$x^{2}-x-1 = 0$$

$$x = \frac{1 \pm \sqrt{5}}{2}$$

$$\frac{1}{2} = \frac{1}{3}x-4 = 8$$

$$\frac{1}{3}x = \frac{1}{2}$$

2 >, -4/2

$$\frac{\zeta}{8} = \sqrt{\frac{3^2}{100}} = \sqrt{\frac{3}{100}}$$

$$\frac{d}{4x-6} = 3$$

-4 € X € 4

Solution

$$4x = 9$$

$$x = 94$$

e. (i) $y' = -\sin x \times 2x$

$$= -x^{2} \cdot -2e^{2x} - 3x^{2} \cdot (i - e^{2x}) \times 2x$$

$$= -x^{2} \cdot (x e^{2x} - 3 + 3e^{2x})$$

$$y' = 6x^{2} - 6x$$

$$y' = 6x^{2} - 6x$$

$$m_{T} = 12$$

$$m_{N} = -\frac{1}{12}$$

$$2 + 12y + 61 = 0$$

$$2 \cdot 12^{2} = \frac{1}{2}r^{2} = 4\pi$$

$$r^{2} = 8\pi - 0$$

$$8 = 5\pi/2 - 0$$

$$V = \frac{8\pi}{5\pi/2} = \frac{16}{5} \text{ cm}$$

$$V = \frac{8\pi}{5\pi/2} = \frac{16}{5} \text{ cm}$$

2=1, 4=-5

i eq q normal is IV

y+5=-/1 (x+1)

b. (i)
$$m_{AB} = \frac{4-5}{5-2} = -\frac{1}{3}$$
 $7 - 5 = -\frac{1}{3}$
 7

$$= \frac{1}{7.5} \text{ unit}$$

$$= \frac{1}{7.5} \text{ unit}$$

$$= \frac{1}{100} \frac{1}{3} \frac{1}{12} = -\frac{1}{12} \frac{1}{12}$$

$$= \frac{1}{100} \frac{1}{12} \frac{1}{12} + C = -\frac{1}{12} \frac{1}{12} \frac{1}{12} + C$$

$$\frac{2}{7} = \frac{1}{1+2\rho}$$

$$\frac{4}{7} = \frac{1}{1+2\rho}$$

$$4+8\rho=7$$

$$\rho=3\sqrt{4}$$

Q139
$$f(x) = 2x^3 - 3x^2 - 36x + 26$$

 $f'(x) = 6x^2 - 6x - 36$
For stat pto $6x^2 - 6x - 36 = 0$
 $x^2 - x - 6 = 0$
 $x = 3 - 2$

... (wordinates of start pts are (3-55) + (-2,70) (iv) for decreasing for them of (w < 0

$$\frac{d^{2}y}{dx} = \int_{0}^{1} (x) = 12x - 6$$

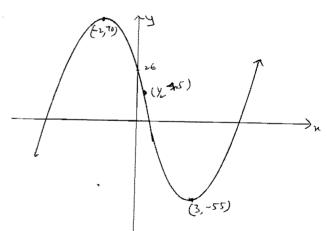
$$at x = 3$$

$$\frac{d^{2}y}{dx} = 36 - 6 = 30 > 0$$

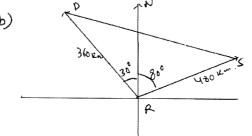
$$at x = -2$$

$$\frac{d^{2}x}{dx} = -2y - 6 = -30 < 0 \quad \text{max at } (-2, 70)$$

$$for possible $f = 0.1$ $\frac{d^{2}y}{dx^{2}} = 0$$$


(ii) for possible
$$\frac{dx^2}{dx^2}$$

$$\frac{12x-6=0}{x} = \frac{1}{x}$$
in


] x	7	-1	Y _L	1	\exists	
d'	1	18	0	6		1
نحسا						

Ther is change in concentyal x=/ (1,45) is P.O.T.

(must show change in concenty)

6x - 6x - 36 <0 (x-3) (x+2) 40 -2 KX K 3 for concave down 12x-6 60 x 21/L -2 <x < 1/2 -0

$$\frac{(691.5)}{90} = \frac{\sin 10^{\circ}}{691.52...}$$

(i)
$$f(6, R) = \frac{3}{4} \times \frac{1}{3} = \frac{1}{4}$$

$$\leq V = 6t - 5 - t^2$$
 $(1) \chi = \frac{6t^2 - 5t - \frac{t^3}{3} + C}{2}$

$$5 = c$$
 $x = 3t^2 - \frac{t^3}{3} - 5t + T$

$$(t-2)(t-1)=0$$

(iii) dist =
$$\left| \int_{0}^{6} (t^{2} - 5 - t^{2}) dt \right| + \left| \int_{0}^{3} (t^{2} - 5 - t^{2}) dt \right|$$

= $\left| (3 + 2 - 5 + - t^{3}) \right| + \left| (3 + 2 - 5 + - t^{3})^{3} \right|$
= $\left| (3 - 5 - 1 - 0) \right| + (27 - 15 - 9) - \left| (12 - 10 - \frac{8}{3}) \right|$
= $3 + (3 - \frac{2}{3}) = 6\frac{2}{3}$ m.

$$V = \frac{\cancel{2} (2t+1)^{3/2}}{3 \times \cancel{2}} + C$$

$$= (2t+1)^{3/2} + C$$

$$at t=0, v=0$$

$$0=\frac{1}{3}+c$$

$$C^{4} = x$$
 $A_{2} = \int_{0}^{\ln 6} g^{2} dy$
 $= e^{4} \int_{0}^{\ln 6} = 6 - 1 = 5$

Since APIPB

$$y^2 = -(2+2)(x-6)$$

QIS a(i) LMS
$$\frac{(\cos e^{\frac{1}{x}} - \cot^{\frac{1}{x}} - \cos^{\frac{1}{x}})}{(\cos^{\frac{1}{x}} - \cot^{\frac{1}{x}} - \cos^{\frac{1}{x}})}$$

$$= \sqrt{1 + \cot^{\frac{1}{x}} - \cot^{\frac{1}{x}} - \cos^{\frac{1}{x}}}$$

$$\cos^{\frac{1}{x}}$$

$$= \frac{1 - \cos^{2}x}{\sqrt{\cos^{2}x}} = \sqrt{\frac{\sin^{2}x}{\cos^{2}x}} = \frac{\sin x}{\cos x} = \tan x = Rns$$

(i)
$$tanx = 1$$
 $x = T/4$

$$\frac{df}{dt} = k \times 20000e^{kt}$$

(ii)
$$t = 0$$
 $l = 2000e^{c} = 2000$
 $t = 4$ $l = 4000$ /

```
= 2B((asB(=LE given) V
    .. Af = 2BC
        2 ln (x by) = 3+ ln x= 19,9
        210,x+ 2lny=3+lnx-lny
        4lnx+ 2lny= 3+lnx-lny
         3 ln 2 + 3 ln y= 3
                                    3 marks correct
           1 nn + Iny= 1
                                  answer for correct
                                   working
            10 mg = 1
                                   2 marks "
            my = e
                                     substantial
                                    1 mark some solid
working
            y = = ==
b = 1000(1+\frac{0.09}{12})^{1}
          = 1000 (1.0075)
           = $ (007.50 / (must calculate)
(ii) Az = 1000 (1.0075)2
    W = 1000(1.0012)3
    An = 1000 (1.0075)
 : A = 1000 (1.0075) + 1000 (1.0075) + --- (1.0075) n
         = 1000[1.0075 + 1.0075<sup>2</sup> + . - - 1.0075<sup>2</sup>]
    (iii Vcone = 1 Tr H.
      Vinincated cone = Vone - V small come
     = = = T (2+)2(h+x) - = T 4x
      = なり(もとれ+じスース)
      = 4 Th(++++-1-+-1)
      = 4 TA (t2+ t2-1)
      = まれん(ナナナヤ)
    (iii) 2++2+h=12
       2t +h= 10
       h = 10-2t V
    V = \frac{4}{3} \Pi(10-2+) \left[ t + t + 1 \right]
     = 8x[(2-4)(++++)]
     = 81 [5t2+5t+5-t3-t2-t]
       = \frac{3}{8\pi} \left[ -t_{3} + 4t_{5} + 4t_{7} + 1 \right]
    at = 8 [-3t + 8+ +4]
```

AF = BE (opposite sides of parallelogism)

BE- BC+CE

But

$$-3t^{2}+8t+4=0$$

$$3t^{2}-8t-4=0$$

$$t = 8t\sqrt{112}$$

$$= 4t 2\sqrt{7}$$

$$3$$

$$3$$

$$3$$

$$3$$

$$3$$

$$4$$

$$4 > 0$$

$$4 > 0$$

$$4 + 2\sqrt{7} = 3.09$$

$$4 > 0$$

$$4 + 2 = 3.09$$

$$4 + 2 = 3.09$$

$$4 + 2 = 3.09$$

$$4 + 2 = 3.09$$

$$4 + 2 = 3.09$$

$$4 + 2 = 3.09$$

$$4 + 2 = 3.09$$

$$4 + 2 = 3.09$$

$$4 + 2 = 3.09$$

$$4 + 2 + 3.09$$

$$4 + 4 + 2 + 3.09$$

$$4 + 4 + 2 + 3.09$$

$$4 + 4 + 2 + 3.09$$

$$4 + 4 + 2 + 3.09$$

$$4 + 4 + 2 + 3.09$$

Henre V= 218.225 unts